
1 Review Problem 1 (from the Spring 2019 Final)

1. Let f(x) = 1√
4−x for 0 ≤ x ≤ 1 and let R be the bounded region between the graph of f and the x-axis.

Find the volume V of the solid obtained by revolving R about the x-axis.

First I’ll draw the graph of f [note the domain is (−∞, 4)] and shade the region R:
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To rotate this around the x-axis, it will be practical to use washers
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We thus set up the washer method:

V = π
∫ 1

0
(f(x))2dx = π

∫ 1

0
( 1√

4−x )2dx = π
∫ 1

0
( 1
4−x )dx

Letting u = 4− x so du = −dx, we have u = 4− 0 = 0 for the new lower bound and u = 4− 1 = 3 for the
new upper. Then,

V = π
∫ 3

4
1
u − du = π

∫ 4

3
1
udu = π[ln |u|]43 = π(ln 4− ln 3) = π ln( 4

3 ).



2 Review Problem 2 (from the Spring 2019 Final)

Suppose a pool has the shape of a half-cylinder 6 ft in diameter and 8 ft long. If the tank is full of water,
write down the formula for the work necessary in order to pump the water up to a level 2 ft above the top
of the tank. Draw a picture of the situation (DO NOT evaluate the integral).

−3 −2 −1 1 2 3 4 5

2

4

6

8

10

8 ft

—— 3 ft——
d(y)

————————— Pump up to here——–

We will use the formula W =
∫ b

a
(62.5 lbf

ft3 )A(y)h(y)dy, where A(y)dy is the infinitesimal volume element

and h(y) is the distance over which the weight 62.5A(y)dy acts.

For us, a = 0, b = 3 are the water levels, and h(y) = 5− y since we need to lift the water up to the level
y = 5 (e.g. the water at the top, at y = 3, needs only travel up 2 meters, i.e. 5− 3).

We still need the cross-sectional area A(y) at each y. Note the cross sections are rectangles of length 8
and width 2d(y), thus we need to find an equation for d(y).

Note that the equation of the full circle for the semicircle in the picture is x2 + (y − 3)2 = 32 = 9, hence
x = d(y) = ±

√
9− (y − 3)2. Since x = d(y) is positive according to our diagram, d(y) =

√
9− (y − 3)2 is

the equation we need. Thus A(y) = 2d(y) · 8 = 16
√

9− (y − 3)2.

Finally,

W =
∫ b

a
(62.5 lbf

ft3 )A(y)h(y)dy =
∫ y=3

y=0
(62.5 lbf

ft3 )(16
√

9− (y − 3)2)(5− y)dy

3 Review Problem 3 (from the Spring 2018 Final)

Let R be the bounded region bounded by the graphs of f(x) = x+ 1 and g(x) = x2 + x. Let S be the solid
region with R as its base, and with square cross-sections perpendicular to the x-axis. Calculate the volume
V of S.

First I’ll graph R:
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We know our integral will be of the form V =
∫ x=b

x=a
A(x)dx for some area function A(x) for our cross-

sections and intersection points x = a, x = b. We’ll determine them.

Set up the equation f(x) = g(x) to find the points of intersection corresponding to x = a, x = b (af-
ter this, instead of graphing f and g one may do a trial point in between, say at x = a to see whether
f(a) ≤ g(a) or vice versa: this would indicate the top function on the interval (x0, x1) so you wouldn’t have
to graph it).

f(x) = g(x) =⇒ x+ 1 = x2 + x =⇒ x2 = 1 =⇒ x = ±1.

Thus a = −1, b = 1.

Lastly, we need to determine A(x) (the area of the blue square as a function of x). However, note that
the side length of the square is f(x)− g(x) = x+ 1− (x2 + x) = 1− x2, telling us

A(x) = (side)2 = (f(x)− g(x))2 = (1− x2)2 = 1− 2x2 + x4.

Finally,

V =

∫ x=b

x=a

A(x)dx =

∫ x=1

x=−1
(1− 2x2 + x4)dx = [x− 2x3

3
+
x5

5
]1−1 (1)

= 1− 2

3
+

1

5
− (−1− −2

3
+
−1

5
) (2)

= 2(1− 2

3
+

1

5
) = 2(

1

3
+

1

5
) (3)

= 2(
5

15
+

3

15
) (4)

=
16

15
. (5)


